Xenobiotic-metabolizing enzyme activities in primary cultures of rat type II pneumocytes and alveolar macrophages.
نویسندگان
چکیده
Because of the evidence for the involvement of xenobiotic bioactivation in pulmonary toxicity and carcinogenesis, it is important to improve our understanding of the xenobiotic-metabolizing enzymes in isolated and cultured specific pulmonary cell populations. Some phase I and phase II xenobiotic-metabolizing enzyme activities, reduced glutathione (GSH), and gamma-glutamyl transferase (gamma-GT) were studied in rat type II pneumocytes and alveolar macrophages cultured for up to 48 h and 3 h, respectively. In type II pneumocytes, 7-ethoxyresorufin activity was not detected. 7-Benzyloxyresorufin (BROD) and 7-pentoxyresorufin (PROD) O-dealkylation decreased at 24 h by 84 and 82%, respectively, and continued to decline over the next 24 h with no measurable PROD at 48 h. The activity of NADPH- and NADH-cytochrome c reductase at 48 h decreased by 31 and 67%, respectively. GST activity decreased by 25 and 42% at 24 and 48 h, respectively. A transient increase in DT-diaphorase activity was observed at 24 h (by 55%). GSH content and gamma-GT activity increased significantly with time in culture. In freshly isolated alveolar macrophages, BROD activity was the only cytochrome P450-dependent alkoxyresorufin-O-dealkylase activity measured. BROD activity decreased by 38% in 3-h-attached macrophages. There were no changes in NADPH- and NADH-cytochrome c reductase, GST, and DT-diaphorase. An increase of GSH (by 24%) was observed in attached macrophages. In conclusion, type II pneumocytes and to a lesser extent alveolar macrophages in primary cultures undergo changes in biotransformation-related enzyme activities and intracellular GSH level that may affect xenobiotic toxicity at different times in culture.
منابع مشابه
The effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzymes in selenium and/or iodine deficient rats
Objective(s): Particularly in developing countries, selenium and/or iodine deficiencies are encountered and use of pesticides in agriculture are not well-controlled. Fenvalerate is a pyrethroid insectide used in agriculture and has applications against a wide range of pests. This study was designed to evaluate the effects of fenvalerate on hepatic and cerebral xenobiotic metabolizing enzyme act...
متن کاملEffect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice
Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...
متن کاملThe effect of asbestos and stone-wool fibres on some chemokines and redox system of pulmonary alveolar macrophages and pneumocytes type II.
The in vitro effect of stone-wool has been studied in primary cultures of pulmonary alveolar macrophages (AM) and type II pneumocytes (T2) by morphological, biochemical and immunological methods. UICC crocidolite was applied as a positive control. Although stone-wool brought about frustrated phagocytosis, it did not induce serious membrane damage, whereas crocidolite gave rise to very severe me...
متن کاملEffect of exposure to silica on human alveolar macrophages in supporting growth activity in type II epithelial cells.
BACKGROUND The proliferative response of type II cells is an important event following silica-induced lung injury. Alveolar macrophages, when activated by fibrogenic agents, secrete various biological mediators which affect cell growth. METHODS Human alveolar macrophages from normal volunteers were incubated in serum-free medium or in the presence of increasing concentrations of silica. Alveo...
متن کاملInfluenza A viruses target type II pneumocytes in the human lung.
BACKGROUND Highly pathogenic avian H5N1 influenza viruses preferentially infect alveolar type II pneumocytes in human lung. However, it is unknown whether this cellular tropism contributes to high viral virulence because the primary target cells of other influenza viruses have not been systematically studied. METHODS We provide the first comparison of the replication, tropism, and cytokine in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2001